EU4Environment in Eastern Partner Countries: Water Resources and Environmental Data (ENI/2021/425-550)

SURFACE WATER SURVEY MOLDOVA 2023

Contract-No: 20940-C1/MD-EAM-2023/2

SURFACE WATER SURVEY MOLDOVA 2023 Contract-No: 20940-C1/MD-EAM-2023/2

EU4Environment in Eastern Partner Countries: Water Resources and Environmental Data (ENI/2021/425-550)

ABOUT THIS REPORT

AUTHORS(S)

LUNGU Marina, Environment Agency Moldova MIHNI Olga, Environment Agency Moldova ZGIRCU Natalia, Environment Agency Moldova LUCHIANOVA Victoria, Environment Agency Moldova

RESPONSIBLE EU MEMBER STATE CONSORTIUM PROJECT LEADER

Alexander Zinke, Umweltbundesamt GmbH (AT)

EUWI+ COUNTRY REPRESENTATIVE IN MOLDOVA

Andrei Ursache (MD)

RESPONSIBLE INTERNATIONAL THEMATIC LEAD EXPERT

Daniel Trauner, Umweltbundesamt GmbH (AT)

DISCLAIMER

This document was produced with the financial support of the European Union and written by the partners of the EU4Environment – Water and Data consortium. The views expressed herein can in no way be taken to reflect the official opinion of the European Union or the Governments of the Eastern Partnership Countries. This document and any map included herein are without prejudice to the status of, or sovereignty over, any territory, to the delimitation of international frontiers and boundaries, and to the name of any territory, city or area.

IMPRINT

Owner and Editor: EU4Environment-Water and Data Consortium

Umweltbundesamt GmbHOffice International de l'Eau (IOW)Spittelauer Lände 521/23 rue de Madrid

1090 Vienna, Austria

75008 Paris, FRANCE

Reproduction is authorised provided the source is acknowledged.

July 2024

ABOUT EU4ENVIRONMENT – WATER RESOURCES AND ENVIRONMENTAL DATA

This Programme aims at improving people's wellbeing in EU's Eastern Partner Countries and enabling their green transformation in line with the European Green Deal and the Sustainable Development Goals (SDGs). The programme's activities are clustered around two specific objectives: 1) support a more sustainable use of water resources and 2) improve the use of sound environmental data and their availability for policy-makers and citizens. It ensures continuity of the Shared Environmental Information System Phase II and the EU Water Initiative Plus for Eastern Partnership programmes.

The Programme is implemented by five Partner organisations: Environment Agency Austria (UBA), Austrian Development Agency (ADA), International Office for Water (OiEau) (France), Organisation for Economic Co-operation and Development (OECD), United Nations Economic Commission for Europe (UNECE). The action is co-funded by the European Union, the Austrian Development Cooperation and the French Artois-Picardie Water Agency based on a budget of EUR 12,75 million (EUR 12 million EU contribution). The implementation period is 2021-2024.

https://eu4waterdata.eu

CONTENTS

List	of ab	breviations	8
Exe	cutive	e Summary	9
1.	Intro	oduction and Scope	10
2.	Met	hods	11
2	.1.	Selected river basins and sampling sites	11
2	.2.	Sampling period and conditions	14
2	.3.	Quality Elements and sampling methods	14
2	.4.	Chemical analyses	14
2	.5.	Responsibilities	16
2	.6.	Quality assurance	18
3.	Resu	ults	19
3	.1.	Field protocols and hydro-morphological site description	19
3	.2.	Chemical results	19
3	.3.	Biological results	21
4.	Disc	ussion of results	26
5.	Next	t steps and Lessons learned	27
6.	Ann	exes	28

LIST OF TABLES

Table 1: Parameters analysed in the field and in the laboratory.	. 10
Table 2: List of sampling sites	. 12
Table 3: List of analysed parameters and analytical methods	. 15
Table 4: Responsibilities during the SW Survey 2023	. 17
Table 5: Taxa list of benthic invertebrates	. 22
Table 6: Biological Status based on benthic invertebrates	. 24

LIST OF FIGURES

Figure 1: Map of sampling	. 11
Figure 2: Dissolved oxygen concentration and oxygen saturation measured during the field survey	. 19
Figure 3: BOD5 and COD measured in the samples	. 20
Figure 4: Variation of ammonium nitrogen and nitrites in the samples from JFS	. 21
Figure 5: Variation of phosphorus parameters in the samples from JFS	. 21

List of abbreviations

ADA	Austrian Development Agency
BQE	Biological Quality Elements
DG NEAR	Directorate-General for Neighbourhood and Enlargement Negotiations of the European Commission
EaP	Eastern Partners
EC	European Commission
EECCA	Eastern Europe, the Caucasus and Central Asia
EPIRB	Environmental Protection of International River Basins
ESCS	Ecological Status Classification Systems
EU	European Union
EU4EnvWD	EU4Environment in Eastern Partner Countries: Water Resources and Environmental Data
EUWI+	European Union Water Initiative Plus
IWRM	Integrated Water Resources Management
RBD	River Basin District
RBMP	River Basin Management Plan
ROM	Result Oriented Monitoring
ToR	Terms of References
UBA	Umweltbundesamt GmbH, Environment Agency Austria
UNECE	United Nations Economic Commission for Europe
WFD	Water Framework Directive
Country Specific A AAM	Abbreviations Moldova Agency "Apele Moldovei"
AGMR	Agency for Geology and Mineral Resources
AMAC	Association of Apacanals
ANRE	National Agency for Economic Regulation of the Energy Sector (also regulates WSS)
EAM	Environment Agency Moldova
MoAgri	Ministry of Agriculture (of the Republic of Moldova)
MoENV	Ministry of Environment (of the Republic of Moldova)
Moldova	Republic of Moldova
SHS	State Hydrometeorological Service

Executive Summary

The "European Union Water Initiative Plus for Eastern Partnership (EaP) Countries (EU4Env)" involves six eastern neighbours of the EU: Armenia, Azerbaijan, Belarus, Georgia, Moldova and Ukraine. The EU4Env project addresses existing challenges in both development and implementation of efficient management of water resources. It specifically supports the EaP countries to move towards the approximation to EU acquis in the field of water management as identified by the EU Water Framework Directive (WFD).

River Basin Management Plans (RBMPs) are the planning tools that give the overall orientation of water management in the River Basin District and the objectives to be reached, and the priorities in the actions to be developed. Monitoring data are an important basis for water management, for risk, status and trend assessment. A strong monitoring system is critical in prioritising investment and creating a cost-effective management system. Hence, it is crucial that monitoring data are reliable (of high quality) to avoid implementing wrong and potentially costly measures.

As specified under activity 2.3.4 ecological and chemical surveys are to be carried out to enable the development and implementation of the RBMPs. The monitoring data gathered under this activity will be used for ecological classification, the validation of the biological assessment methods, the validation of the surface water body delineation, the validation of the monitoring design and the validation of the pressure-impact assessment. Furthermore, the gathered data build a basis for the upcoming risk, status and trend assessment.

The field survey in Prut River Basin carried out with the support of EUWI+ at 20 sampling sites between 17th until 21st of July has to serve as an example for further investigative monitoring in order to obtain reliable monitoring data for covering monitoring data gaps.

1. Introduction and Scope

The objective of the survey in July 2023 was to form a sound methodological basis for future monitoring programs as an essential part of river basin management planning.

The scope was to

- Train the experts on BQE and chemical sampling;
- Provide data for the evaluation of the water body delineation;
- Provide data for the classification of selected surface water bodies as part of the RBMP;
- Provide data for the evaluation of the monitoring design in preparation of future surveys;
- Provide data for the pressure-impact assessment in order to evaluate existing assessment
- methods or develop new ones;
- Create a database for the upcoming risk, status and trend assessment.

Involved institutions: the main beneficiary is, of course, the Ministry of Environment. Since June 2018 Environment Agency (EAM) of the Republic of Moldova has been appointed as the institution responsible for monitoring, including also surface waters. The Reference Laboratory was involved directly and took part in the survey with its own sampling team and analysing the taken samples. Austrian experts have been also involved during the whole process, starting with planning, sampling campaign, samples analyses and, even, reporting.

Country	Republic of Moldova			
River basin	Prut the Danube and the Black Sea			
Campaign 1)	Summer 2023			
Objective	 Collecting data for the evaluation of existing or development of new assessment methods for benthic invertebrates Providing a database for the definition of reference conditions for benthic invertebrates in selected river types 			
	Biological quality components:			
	Macrozoobenthos			
	Phytobenthos			
	Supporting elements:			
	Hydro-morphological site description			
Quality elements	General physico-chemical quality elements			
Preparation of field work	13-14 July			
Field work	Dates (17-21 July)			
Chemical analyses	Expected date period (24 July-11 August)			
Biological analyses	Expected date period (24 July-27 October)			
Reporting	Expected date period (27 October – 30 November)			
Submission of technical report	1 st of December (1 st draft), 23 rd July 2024 (final version)			

Table 1: Parameters analysed in the field and in the laboratory.

2. Methods

2.1. Selected river basins and sampling sites

All 20 sampling stations have been selected within the Prut River Basin taking into account the lack of monitoring data for the water bodies they correspond to (figure 1). It happened that they are all situated in the North part of the

Republic of Moldova, except 2 sections.

Surface Water Monitoring EU4Environment

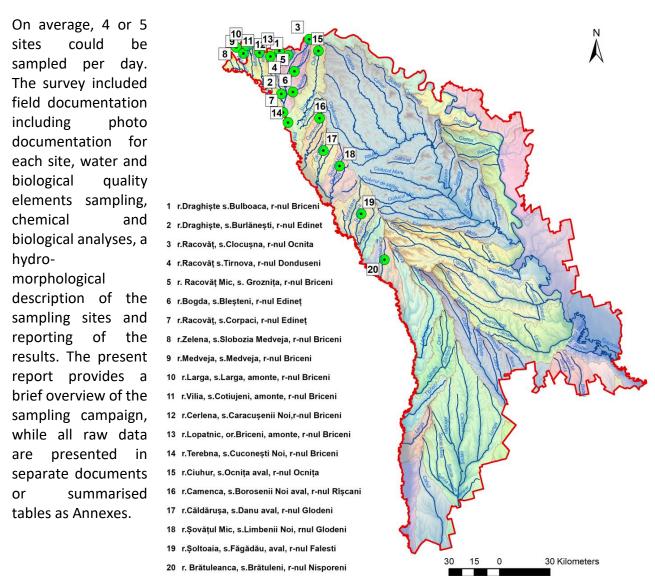


Figure 1: Map of sampling

River basin River WB River WB Site Nr HMWB Risk Significant Latitude Longitude 1) 2) Pressure 3) 4) 4) type Type No R Prut, Danube, Draghiște MD02012202/1 A 12 2 XII Bulboaca Village; 1 М 48.342394 27.184529 Black Sea River Briceni District Prut, Danube, Draghiste MD02012202/2 A 12 2 Ш Burlănesti Village; 2 No R Μ 48.119299 27.122589 Black Sea River Edinet District MD020126/2 A 12 2 Clocușna Village; 3 Yes 27.365242 Prut, Danube, Racovăț River V R Μ 48.434911 **Ocnita District** Black Sea Prut, Danube, Racovăț River MD02012204/2 A 12 2 IV Tirnova Village; 4 Yes R Μ 48.184898 27.658591 Black Sea Edinet District Prut, Danube, Racovăt Mic MD02012204/1 A 12 2 XII Groznita Village; 5 Yes R Μ 48.251002 27.232110 Black Sea Briceni District River A_12_2 27.224322 Prut, Danube, Bogda River MD02012203/2 Ш Bleșteni Village; 6 Yes R Μ 48.128857 Black Sea Edinet District Prut, Danube, Racovăț River MD020122/2 A 12 2 11 Corpaci Village; 7 yes R Μ 48.013831 27.138509 Black Sea Edinet District MD020127/1 Slobozia Medveja No Prut, Danube, Zelena River A 12 2 VII 8 PR Μ 48.387967 26.734377 Black Sea Village; Briceni District MD020126/1 A 12 2 Medveja Village; 9 No R 26.795768 Prut, Danube, Medveja VII Μ 48.353209 Black Sea River Briceni District Prut, Danube, Larga River MD020125/1 A 12 2 XI Larga Village, 10 No R Μ 48.396886 26.831338 Black Sea upstream; Briceni District Prut, Danube, Vilia River MD020124/1 A 12 2 Cotiujeni 11 Yes R Μ 48.357957 26.934784 V Black Sea Village, upstream; Briceni District MD02012401/1 A_12_2 Caracuşenii Noi 12 Yes Μ 48.336233 27.028537 Prut, Danube, Cerlena River XII R Black Sea Village; Briceni District Prut, Danube, MD020123/1 A 12 2 Briceni Village, 13 Yes R Μ 48.367450 27.105699 Lopatnic XI Black Sea River upstream; Briceni District Prut, Danube, MD020121/1 A 12 2 V Cuconesti Noi 14 Yes R Μ 27.194415 Terebna 47.959302 River Black Sea Village; Briceni District

Table 2: List of sampling sites.

Prut, Danube, Black Sea	Ciuhur River	MD020120/1	A_12_2	V	Ocnița Village, downstream; Ocnita District	15	Yes	R	M	48.366986	27.443812
Prut, Danube, Black Sea	Camenca River	MD020119/1	A_12_2	VII	Borosenii Noi Village, downstream; Riscani District	16	Yes	R	M	47.979891	27.450011
Prut, Danube, Black Sea	Căldărușa River	MD02011903/1	A_12_2	VII	Danu Village, downstream; Glodeni District	17	Yes	R	M	47.792999	27.481758
Prut, Danube, Black Sea	Şovățul Mic River	MD02011901/1	A_12_2	VII	Limbenii Noi Village; Glodeni District	18	Yes	R	М	47.704016	27.619944
Prut, Danube, Black Sea	Şoltoaia River	MD020115/1	A_12_2	VII	Făgădău Village, downstream; Falesti District	19	Yes	R	M	47.426792	27.799596
Prut, Danube, Black Sea	Bratuleanca River	MD020112/1	A_12_2	IV	Brătuleni Village; Nisporeni District	20	Yes	R	М	47.162014	27.991887

¹⁾ Assignment as provisional HMWB: yes / no

²⁾ Assignment of the risk status: R = at risk, PR = possibly at risk, NR = not at risk

³⁾ Significant pressure: N = no significant pressure, P = organic pollution, E = eutrophication, T = toxic impact, H = hydro-morphological alterations, M = multistressor, O = other, U = unknown

⁴⁾ Latitude, Longitude: Format = Degree with six decimals (e.g. as 44.630139, conversion from 44° 37′ 48.5″ through calculation 44 + 37 / 60 + 48.5 / 3600)

2.2. Sampling period and conditions

The sampling period has been chosen in summer, July. Accordingly, during the field survey the weather was warm to hot (23-35°C) with no precipitations. The water level in the rivers was low in most cases, except Draghiste and Racovat Rivers. Due to weather and hydrological conditions, as well as water abstraction, 7 sampling sites were lacking water; thus no samples could be taken there. The turbidity of the water in most analysed sampling points has been high due to high concentration of suspended solids from the mud.

2.3. Quality Elements and sampling methods

The biological quality elements sampled have been: benthic invertebrates and phytobenthos.

The **benthic invertebrates** have been sampled using the multi-habitat sampling (MHS) method developed during EU AQEM and STAR projects. Prior to taking samples, the sampling reach was inspected along a 50-100 m river stretch in order to get a representative sample. For each river stretch it was taken into account all possible substrates potentially inhabited by benthic invertebrates, i.e. the river bottom sediment, wooden debris, artificial substrate, macrophytes etc. The identification of benthic invertebrates started in the field by using white trays. Rare and endangered animals such as large mussels have been picked out, documented in the field and released again; they were not taken to the lab. After removal of larger wooden pieces, leaves and larger stones (whilst removing clinging animals) from the sample; rinsing and sieving to remove the mud; the samples have been fixed with ethanol 96%, giving a final concentration of 70%. The samples have been stored in the cooling box and delivered to the laboratory for sorting and identification.

In order to sample **benthic diatoms**, the preferred substrate was cobbles, but also pebbles and boulders at some stations. At least 5 cobbles or rather 10 cm² of suitable substratum have been brushed or scraped. The collected suitable cobbles or similar substrate were put in the tray along with some river water. The upper surface of the stones has been brushed with a clean stiff toothbrush vigorously to remove the diatom film, rinsing the toothbrush periodically in the water. In case we could not take cobbles or other hard substrate, macrophytes have been washed up (ex. Racovat River-Brinzeni Village – site no. 7). Afterwards, the samples have been preserved with alcohol and transferred to the laboratory in a cool box.

2.4. Chemical analyses

The taking of the water samples for the chemical analyses was done before taking biological samples to avoid bias effects from stirred-up sediment. During the sampling field survey, water field measurements (water temperature, pH, conductivity, dissolved oxygen concentration and saturation) have been performed. Also, the observed parameters, like turbidity, smell and colour were fixed in protocols. For laboratory analyses at each sampling site 3 bottles have been taken for specific analyses like mineral components, nutrients, heavy metals and oxygen parameters. The samples have been preserved accordingly to avoid changes in the composition. The sampling and preservation were carried out following the standard EN ISO 5667-6.

<u>Parameter</u>	Unit	Method/Standard
Field measurements	•	·
Water temperature	Degrees Celsius	Thermometer measurement
pH	-	PO-pH-A-7.2.1-02
		(based on SM SR EN ISO 10523:2014)
Electrical conductivity	μS/cm	
Dissolved oxygen concentration	mg O ₂ /I	
Oxygen saturation	%	
Colour	description	observation
Smell	description	observation
Turbidity	Description (1 to 4)	observation/turbidimetric method
Laboratory analyses	·	
Biological oxygen demand (BOD ₅)	mg/l	PO-CBO ₅ -A-7.2.1-04
		(based on SM SR EN 1899-2:2012)
Chemical oxygen demand, K ₂ Cr ₂ O ₇	mg/l	PO-CCO _{Cr} -A-7.2.1-03
(COD)		(based on SM SR ISO 6060:2006)
Ammonium-N	mg/l	PO-NH ₄ + -A-7.2.1-14
		(based on the Guidance on the chemical analysis
		of surface waters, Leningrad, 2009)
Nitrite-N	mg/l	PO-NO ₂ A-7.2.1-15
		(based on the Guidance on the chemical analysis
		of surface waters, Leningrad, 2009)
Nitrate-N	mg/l	PO-NO ₃ A-7.2.1-06
		(based on SM SR ISO 7890-3:2006)
Orthophosphate-P	mg/l	PO - P _{total} /P-PO ₄ 3A-7.2.1-11
		(based on SM SR EN ISO 6878:2011)
Total phosphorus (unfiltered) (TP)	mg/l	PO - P _{total} /P-PO ₄ 3A-7.2.1-11
		(based on SM SR EN ISO 6878:2011)
Chloride (Cl–)	mg/l	PO-CIA-7.2.1-07
		(based on SM SR ISO 9297:2012)
Sulphates (SO42–)	mg/l	PO-SO42-A-7.2.1-12
		(based on the Guidance on the chemical analysis
		of surface waters, Leningrad, 2009)
Total hardness	mMol/L	PO-D/Ca2+/ Mg2+-A-7.2.1-05
		(based on SM SR ISO 6059:2012)
Calcium (Ca2+)	mg/l	PO-D/Ca2+/ Mg2+-A-7.2.1-05
		(based on the Guidance on the chemical analysis
· · · · · · · · · · · · · · · · · · ·		of surface waters, Leningrad, 2009)
Magnesium (Mg2+)	mg/l	PO-D/Ca2+/ Mg2+-A-7.2.1-05
		(based on the Guidance on the chemical analysis
		of surface waters, Leningrad, 2009)
Sodium (Na+)	mg/l	PO-Na/K-A-7.2.1-13
		(based on SM STAS 8295:2007)
Potassium (K+)	mg/l	PO-Na/K-A-7.2.1-13
		(based on SM STAS 8295:2007)
Total suspended solids (TSS)	mg/l	PO-MS-A-7.2.1-09
		(based on SM STAS 6953:2007)
Copper dissolved (Cu)	μg/l	PO-Me-A7.2.1 -12
		(based on SR EN ISO 15586:2003)

Table 3: List of analysed parameters and analytical methods

Zinc dissolved (Zn)	μg/l	PO-Me-A7.2.1 -12
		(based on SR EN ISO 15586:2003)
Manganese dissolved (Mn)	μg/l	PO-Me-A7.2.1 -12
		(based on SR EN ISO 15586:2003)
Nickel dissolved (Ni)	μg/l	PO-Me-A7.2.1 -12
		(based on SR EN ISO 15586:2003)
Lead dissolved (Pb)	μg/l	PO-Me-A7.2.1 -12
		(based on SR EN ISO 15586:2003)
Cadmium dissolved (Cd)	μg/l	PO-Me-A7.2.1 -12
		(based on SR EN ISO 15586:2003)
Chromium dissolved (Cr)	μg/l	PO-Me-A7.2.1 -12
		(based on SR EN ISO 15586:2003)
Mercury dissolved (Hg)	μg/l	PO-Hg-A7.2.1 -13
		(based on SR EN ISO 17852:2006)

2.5. Responsibilities

The design of the field survey was developed under the EU4Env project. Austrian experts have been very cooperative during the whole process, starting with planning, sampling campaign, samples analyses and, even, reporting.

The responsible institution in Moldova has been EAM through Reference Laboratory which was involved directly and took part in the survey with its own sampling team and analysing the taken samples.

Responsibilities	Institution, contact person, email-address
General	
	Institute: EAM
	Contact person: LUNGU Marina
Responsible for the organisation of	E-Mail: <u>m_lungu@am.gov.md</u>
surface water body sampling	
Field work	
	Institute: EAM Contact person: JĂPĂLĂU Vladislav
	UBA expert: Daniel TRAUNER
	Supporting person(s): PARAȘCIUC Vasile
	LUCHIANOVA Victoria; ZGIRCU Natalia
	E-Mail:v_japalau@am.gov.md
Responsible for field work	v_parasciuc@am.gov.md
(biological and chemical sampling,	v luchianova@am.gov.md
hydro-morphological site	<u>n_zgircu@am.gov.md</u>
description)	
	Institute:EAM Contact person: JĂPĂLĂU Vladislav
Responsible for functional check of	E-Mail: v japalau@am.gov.md
sampling equipment	L Wall. <u>V Japalaa e anigovina</u>
	Institute: EAM
	Contact person: JĂPĂLĂU Vladislav
Responsible for calibration of on-	E-Mail: v japalau@am.gov.md
site measuring equipment	
Chemical analysis	
Overall responsible for the	
chemical analysis in the lab,	Institute: EAM
including reporting and data	Contact person: MIHNI Olga
delivery	E-Mail:o_mihni_@am.gov.md Institute: EAM
	Contact person: JĂPĂLĂU Vladislav/
	PARAȘCIUC Vasile
	E-Mail: v_japalau@am.gov.md
Responsible for sample transport	v parasciuc@am.gov.md
from the field to the laboratory	
	Institute:EAM
Analysing John and John State	Contact person: MIHNI Olga
Analysing laboratory and contact	E-Mail: <u>o mihni @am.gov.md</u>
person Biological analysis	
Overall responsible for the	Institute: vvv
biological analysis in the lab,	Institute: xxx Contact person: LUCHIANOVA Victoria/ ZGÎRCU Natalia
including reporting and data	E-Mail: v luchianova@am.gov.md
delivery	n zgircu@am.gov.md
······································	

Table 4: Responsibilities during the SW Survey 2023

2.6. Quality assurance

Quality assurance is achieved through the Quality Management System (SMC), ensured in the laboratory and confirmed by the National Accreditation Body of Moldova (MOLDAC). The laboratories are accredited to ISO 17025/LÎ-133.

According to the Regulation the objectives of the Quality Assurance Laboratory are:

- ensures the impartiality, independence and integrity of the laboratory staff, including the exclusion of any outside influence on the results of the laboratory activity;
- ensures a high level of technical training of the personnel and of the technical equipment necessary for carrying out the specific tests, taking into account the requirements of the test methods;
- allocates the necessary resources for the proper functioning of the laboratory and the continuous improvement of the management system.

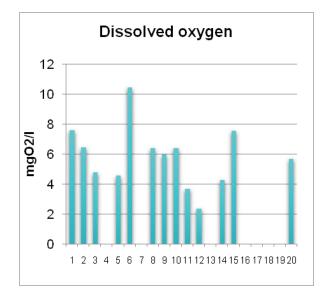
	str. Gheorghe	Tudor, 5, MD-2005	, mun. Chişinäu, Rep	ublica Moldova	
	MOLDAC) werene		ILAC-MRA	
M	OLDAC es	ste semnatar	EA - MLA per	ıtru încercări	
	CERT		E ACREDI Î - 133	TARE	
		ATORUL DE	C declară că: REFERINȚĂ D GENȚIEI DE M		
Adi		cod CUI	2005, mun. Chişin 10 39062856 mun. Chişinâu, str.	ău, str. Albișoara, . Grenoble, 134	38, 000000
satisface c incercările	erințele SM definite în A	EN ISO/IEC I nexa la prezen	7025:2018 și est tul Certificat de	te competent să Acreditare.	efectueze
		numai însoțit ui Certificat d		2.05.2023, care o	constituie
		este valabilă stabilite de MG		plinirii în mod c	ontinuu a
				ării inițiale: 18 mai modificări: 22 mai ii: 17 mai	2023
	Director		Iurie I	RIPTULEAC	

3. Results

3.1. Field protocols and hydro-morphological site description

The field protocols and hydromorphological site description have been scanned and are presented in annexes 2, 3. Also, annex 1 presents the field protocols in excel format.

In 7 locations there was no water due to the drought and water abstraction. Most of the investigated rivers have low to medium depth; 7 of them have natural channel cross section, 5 - semi-natural and 1 embanked. The channel plan form of the rivers was sinuous in most cases, while the river valley has U-shape in 4 cases, asymmetrical in 2 cases and with no perceptible river valley in 6 cases. Some of the rivers have many embankments and formed lakes on them, most of them are being used for agriculture.


The weather conditions in the field were good, the air temperature was appropriate for July month (23-35 degrees Celsius). It was sunny most of the days, with no precipitation, warm and even hot.

The measured parameters in the field were: pH, conductivity, temperature of water, turbidity, oxygen concentration and saturation. Thus the water temperature ranged from 18-29°C; the pH from 7,36-8,97; the highest electrical conductivity (4032 μ S/cm) has been measured in Bratuleanca River/site nr. 20; the oxygen concentration ranged from 2,36-10,43 mg/l, while the oxygen saturation was 30,1-136,8%.

3.2. Chemical results

The obtained results on chemical analyses are presented in annex 4.

The minimum DO concentration and saturation have been measured at station nr. 12 - Lopatnic River (fig.2). COD ranged between 10,34-13,78 mgO₂/l (fig. 3).

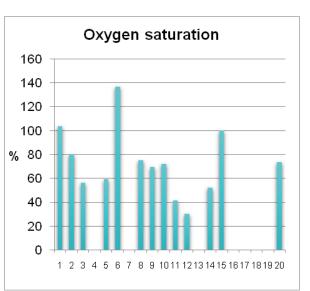
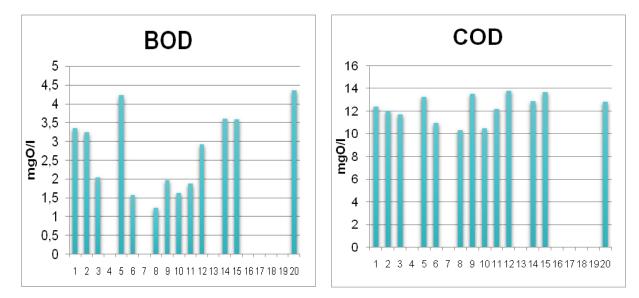



Figure 2: Dissolved oxygen concentration and oxygen saturation measured during the field survey

Many maximum values of physico-chemical parameters (BOD, magnesium, sulphate, chloride, sodium, potassium, ammonium nitrogen, orthophosphate) have been detected for Bratuleanca River (station nr. 20, annex 4). Also, at this station anionic surfactants have had the highest value (0,125 mg/l).

Figure 3: BOD5 and COD measured in the samples

Nutrients (fig.4 and 5) have had the maximum values for:

- Ammonium nitrogen 0.428 mgN/l at Bratuleanca River/station nr. 20;
- Nitrites 0.093 mgN/l at station nr. 3 on Racovat River;
- Nitrates 0.07 mgN/l at station nr. 14 Ciuhur River, Ocnita Village;
- Orthophosphates 0.851 mgP/l at Bratuleanca River/station nr. 20;
- Total phosphorus 1.124 mgP/l in Draghiste River-Bulboaca Village, station nr. 1.

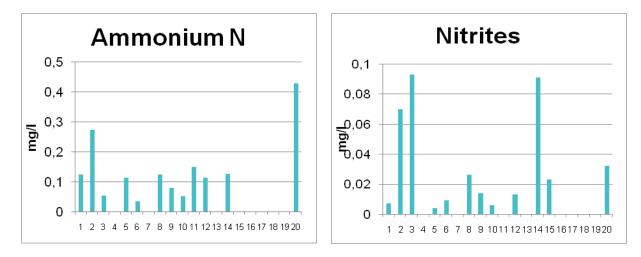


Figure 4: Variation of ammonium nitrogen and nitrites in the samples from JFS

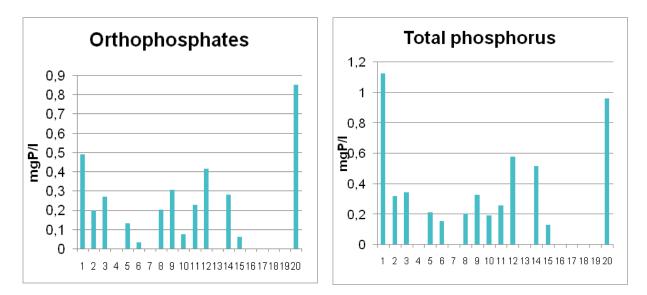


Figure 5: Variation of phosphorus parameters in the samples from JFS

From heavy metals there have been analysed 8 parameters, dissolved forms, and total iron. Traces of lead and cadmium have not been found.

3.3. Biological results

Benthic invertebrates: The samples have been abundant in species, less species (4) being found in Draghiste River-Burlanesti Village (2-nd sampling point). The 113 species found belong to 60 families of 8 major groups.

Major Group	Order/Class	Family	Genus/Species	AQEM ID
Annelida	Clitellata		Oligochaeta Gen.sp.	8736
Annelida	Clitellata	Lumbriculidae	Stylodrilus heringeanus	6935
Annelida Clitellata		Naididae	Potamothrix moldaviensis	6533
Arachnida	Araneae	Cybaeidae	Argyroneta aquatica	4349
Collembola	Poduromorpha	Poduridae	Podura aquatica	
Crustacea	Amphipoda	Crangonyctidae	Crangonyx pseudogracilis	11227
Crustacea	Amphipoda	Gammaridae	Gammarus fossarum	5288
Crustacea	Amphipoda	Gammaridae	Gammarus kischineffensis	21819
Crustacea	Amphipoda	Gammaridae	Gammarus pulex	5291
Crustacea	Amphipoda	Niphargidae	Niphargus sp.	6127
Crustacea	Amphipoda	Pontogammaridae	Pontogammarus robustoides	10491
Crustacea	Isopoda	Janiridae	Jaera istri	8700
Crustacea	Ostracoda	Cyclocyprididae	Cypria ophtalmica	
Hirudinea	Arhynchobdellida	Erpobdellidae	Erpobdella octoculata	5159
Hirudinea	Arhynchobdellida	Erpobdellidae	Erpobdella testacea	5161
Hirudinea	Arhynchobdellida	Haemopidae	Haemopis sanguisuga	5373
Hirudinea	Rhynchobdellida	Glossiphoniidae	Alboglossiphonia heteroclita	4261
Hirudinea	Rhynchobdellida	Glossiphoniidae	Alboglossiphonia hyalina	7856
Hirudinea	Rhynchobdellida	Glossiphoniidae	Glossiphonia concolor	5307
Hirudinea	Rhynchobdellida	Glossiphoniidae	Helobdella stagnalis	5413
Insecta	Coleoptera	Dytiscidae	Ilybius fuliginosus Ad.	11730
Insecta	Coleoptera	Dytiscidae	Laccophilus minutus Ad.	12054
Insecta	Coleoptera	Dytiscidae	Laccophilus sp. Lv.	5706
Insecta	Coleoptera	Dytiscidae	Platambus maculatus Lv.	6437
Insecta	Coleoptera	Elmidae	Elmis sp. Lv.	5095
Insecta	Coleoptera	Elmidae	Riolus sp. Lv.	6797
Insecta	Coleoptera	Haliplidae	Haliplus fluviatilis Ad.	12436
Insecta	Coleoptera	Haliplidae	Haliplus lineatocollis Ad.	12430
Insecta	Coleoptera	Haliplidae	Haliplus sp. Lv.	5396
Insecta	Coleoptera	Hydrophilidae	Anacaena bipustulata Ad.	12960
Insecta	Coleoptera	Scirtidae	Elodes marginata Lv.	12900
		Scirtidae	5	
Insecta	Coleoptera		Elodes sp. Lv.	5418 4585
Insecta	Diptera	Ceratopogonidae	Ceratopogonidae Gen. sp.	
Insecta	Diptera	Ceratopogonidae	Culicoides sp.	9664
Insecta	Diptera	Chironomidae	Chironomidae Gen sp.	4642
Insecta	Diptera	Chironomidae	Chironominae Gen. sp.	4643
Insecta	Diptera	Chironomidae	Chironomini Gen. sp.	4644
Insecta	Diptera	Chironomidae	Macropelopia sp.	5934
Insecta	Diptera	Chironomidae	Prodiamesinae sp.	10332
Insecta	Diptera	Chironomidae	Tanypodinae Gen. sp.	6972
Insecta	Diptera	Culicidae	Anopheles (Anopheles) sp.	18947
Insecta	Diptera	Culicidae	Uranotaenia unguiculata	7774
Insecta	Diptera	Dixidae	Dixa dilatata	10368
Insecta	Diptera	Dixidae	Dixa sp.	4989
Insecta	Diptera	Fanniidae	Fanniidae sp.	16815
Insecta	Diptera	Limoniidae	Limoniidae Gen. sp.	8483
Insecta	Diptera	Limoniidae	Pilaria sp.	6403
Insecta	Diptera	Muscidae	Muscidae Gen. sp.	8659
Insecta	Diptera	Pediciidae	Dicranota sp.	4955
Insecta	Diptera	Ptychopteridae	Ptychoptera sp.	7492
Insecta	Diptera	Scathophagidae	Scathophagidae Gen. sp.	9601
Insecta	Diptera	Simuliidae	Simulium aureum-Gr.	9769
Insecta	Diptera	Simuliidae	Simulium sp.	6853

Table 5: Taxa list of benthic invertebrates

Insecta	Diptera	Tabanidae	Chrysops sp.	9324
Insecta	Diptera	Tabanidae	Tabanus sp.	6963
Insecta	Diptera	Tipulidae	Tipula sp.	7077
Insecta	Diptera		Sphaeromiini sp (pupa)	
Insecta	Ephemeroptera	Baetidae	Baetis fuscatus	4397
Insecta	Ephemeroptera	Baetidae	Baetis rhodani	4415
Insecta	Ephemeroptera	Baetidae	Baetis sp.	4419
Insecta	Ephemeroptera	Baetidae	Baetis tracheatus	4423
Insecta	Ephemeroptera	Baetidae	Cloeon dipterum	4705
Insecta	Ephemeroptera	Caenidae	, Caenis robusta	4527
Insecta	Ephemeroptera	Leptophlebiidae	Leptophlebia marginata	5730
Insecta	Hemiptera	Aphelocheiridae	Aphelocheirus aestivalis	4335
Insecta	Hemiptera	Corixidae	Hesperocorixa linnaei	5462
Insecta	Hemiptera	Corixidae	Hesperocorixa sahlbergi	5463
Insecta	Hemiptera	Corixidae	Sigara falleni	6825
Insecta	Hemiptera	Gerridae	Gerris lacustris	5299
Insecta	Hemiptera	Micronectidae	Micronecta griseola	8200
Insecta		Micronectidae	Micronecta scholtzi	8200
Insecta	Hemiptera	Micronectidae		6002
	Hemiptera Hemiptera	Naucoridae	Micronecta sp. Ilyocoris cimicoides ssp.	19346
Insecta	· ·		Nepa cinerea	6118
Insecta	Hemiptera	Nepidae		
Insecta	Hemiptera	Nepidae	Ranatra linearis	6674
Insecta	Hemiptera	Notonectidae	Notonecta glauca ssp.	19375
Insecta	Hemiptera	Notonectidae	Notonecta sp.	6139
Insecta	Hemiptera	Notonectidae	Notonecta viridis	8208
Insecta	Hemiptera	Pleidae	Plea minutissima ssp.	19392
Insecta	Hemiptera	Veliidae	Velia caprai	7149
Insecta	Megaloptera	Sialidae	Sialis lutaria	6822
Insecta	Trichoptera	Hydropsychidae	Hydropsyche angustipennis ssp.	21230
Insecta	Trichoptera	Hydropsychidae	Hydropsyche instabilis	5598
Insecta	Trichoptera	Hydroptilidae	Hydroptila sp.	5616
Insecta	Trichoptera	Limnephilidae	Anabolia furcata	4298
Insecta	Trichoptera	Limnephilidae	Micropterna nycterobia	6022
Insecta	Trichoptera	Limnephilidae	Stenophylax sp.	6912
Insecta/Odonata	Anisoptera	Libellulidae	Orthetrum brunneum	7441
Insecta/Odonata	Anisoptera	Libellulidae	Orthetrum cancellatum	6207
Insecta/Odonata	Anisoptera	Libellulidae	Sympetrum sanguineum	6948
Insecta/Odonata	Zygoptera	Calopterygidae	Calopteryx splendens	4530
Insecta/Odonata	Zygoptera	Coenagrionidae	Coenagrionidae Gen. sp.	4723
Insecta/Odonata	Zygoptera	Coenagrionidae	Enallagma cyathigerum	5100
Insecta/Odonata	Zygoptera	Coenagrionidae	Erythromma viridulum	5165
Insecta/Odonata	Zygoptera	Lestidae	Chalcolestes viridis	4629
Insecta/Odonata	Zygoptera	Platycnemididae	Platycnemis pennipes	6438
Malacostraca	Isopoda	Asellidae	Asellus aquaticus	8691
Malacostraca	Mysida	Mysidae	Limnomysis benedeni	8730
Mollusca	Bivalvia	Sphaeriidae	Euglesa casertana	19391
Mollusca	Bivalvia	Sphaeriidae	Euglesa subtruncata	6426
Mollusca	Bivalvia	Sphaeriidae	Sphaerium/Musculium lacustre	7966
Mollusca	Bivalvia	Unionidae	Anodonta anatina	7381
Mollusca	Bivalvia	Unionidae	Unio pictorum ssp.	19441
Mollusca	Gastropoda	Hydrobiidae	Avenionia roberti	12922
Mollusca	Gastropoda	Lymnaeidae	Galba truncatula	5284
Mollusca Mollusca	Gastropoda	Lymnaeidae	Lymnaea stagnalis	5916
	Gastropoda	Lymnaeidae	Radix balthica	16959
Mollusca	Gastropoda	Lymnaeidae	Radix labiata	16982

Mollusca	Gastropoda	Planorbidae	Gyraulus parvus	5358
Mollusca	Gastropoda	Valvatidae	Borysthenia naticina	4471
Mollusca	Gastropoda	Valvatidae	Valvata piscinalis piscinalis	7144

Based on the collected and identified taxa the saprobic index was calculated. According to the Moldovan Government Decision (GD) 890, this index is used for status assessment. Furthermore, the data was entered into the Ecological Status Classification System (ESCS) based on Multi-Metric Indices (MMI) of benthic invertebrates developed previously during the project EUWI+¹. Table 6 shows both calculated ecological results. Out of 20 sites, seven had no water at the time of sampling. According to the MMI ESCS, site 2 shows Bad Status, six sites Poor Status, three sites Moderate Status, two sites Good Status, one site High Status. Detailed results are provided in Annex 7. The status based on GD 890 paint a different picture, with one site in high status (I), eight in good status (II), three in moderate status (III), and one site in poor status (GD 890) is a system that indicates pressures caused by nutrient input. The MMI takes into account a multiple indices and calculates the status based on thresholds derived from river type specific reference conditions. The MMI is more sensitive than the Saprobic Index and different versions of this approach are used in the EU member states for status assessment.

Site	River	WB	Site Name	Biological Status MMI*	AQEM saprobic index/ Zelinka Marvan	Biological Status GD 890**
1	Draghiște River	MD02012202/1	Bulboaca Village; Briceni District	POOR	2,1	П
2	Draghiște River	MD02012202/2	Burlănești Village; Edinet District	BAD	1,9	П
3	Racovăț River	MD020126/2	Clocușna Village; Ocnita District		no water	
4	Racovăț River	MD02012204/2	Tirnova Village; Edinet District	POOR	2,28	П
5	Racovăț Mic River	MD02012204/1	Groznița Village; Briceni District	no water		
6	Bogda River	MD02012203/2	Bleșteni Village; Edinet District	MODERATE	2,026	П
7	Racovăț River	MD020122/2	Corpaci Village; Edinet District	POOR	2,028	П
8	Zelena River	MD020127/1	Slobozia Medveja Village; Briceni District		no water	
9	Medveja River	MD020126/1	Medveja Village; Briceni District	MODERATE	2,14	Ш
10	Larga River	MD020125/1	Larga Village, upstream; Briceni District	GOOD	2,144	Ш
11	Vilia River	MD020124/1	Cotiujeni Village,upstream; Briceni District	HIGH	2,602	ш
12	Cerlena River	MD02012401/1	Caracușenii Noi Village; Briceni District	POOR	2,704	ш

Table 6: Biological Status based on benthic invertebrates

¹ <u>https://www.euwipluseast.eu/en/component/k2/item/1116-moldova-definition-of-reference-conditions-and-class-boundaries-in-rivers-of-moldova-for-the-bqe-benthic-invertebrates-eng?fromsearch=1</u>

Site	River	WB	Site Name	Biological Status MMI*	AQEM saprobic index/ Zelinka Marvan	Biological Status GD 890**
13	Lopatnic River	MD020123/1	Briceni Village, upstream; Briceni District	POOR	2,758	IV
14	Terebna River	MD020121/1	Cuconești Noi Village; Briceni District		no water	
15	Ciuhur River	MD020120/1	Ocnița Village, downstream; Ocnita District	POOR	1,761	I
16	Camenca River	MD020119/1	Borosenii Noi Village, downstream; Riscani District	GOOD	2,064	Ш
17	Căldărușa River	MD02011903/1	Danu Village, downstream; Glodeni District		no water	
18	Şovățul Mic River	MD02011901/1	Limbenii Noi Village; Glodeni District	no water		
19	Şoltoaia River	MD020115/1	Făgădău Village, downstream; Falesti District		no water	
20	Bratuleanca River	MD020112/1	Brătuleni Village; Nisporeni District	MODERATE	2,562	ш

*Biological Status calculated based on Multi-Metric Indices (MMI) in an ESCS based on type-specific reference conditions developed previously during EUWI+.

**Biological Status according to the official Moldovan method, using the Saprobic Index, based on Government Decision (GD) 890.

Benthic Diatoms. 205 diatom taxa were identified in 13 samples. The largest number of species was identified in Dragiste River in the site near the village of Bulboaca – 59 species. The lowest number of species was identified in Brătuleanca River at Brătuleni Village and reached only 21 species. The most abundant and the most frequent species were *Achnanthidium minutissimum* (Kützing) Czarnecki var. *minutissimum, Amphora pediculus* (Kützing) Grunow var. *pediculus, Cocconeis placentula* var. *euglypta* (Ehrenberg) Grunow, *Craticula subminuscula* (Manguin) C.E. Wetzel & Ector in Wetzel et al. *Cyclotella meneghiniana* Kützing, *Cyclotella atomus* Hustedt var. *atomus, Navicula tripunctata* (O.F.Müller) Bory var. *tripunctata, Navicula cryptotenella*-Type in Kelly (TDI), *Nitzschia dissipata* (Kützing) Grunow, *Nitzschia inconspicua* Grunow, and *Rhoicosphenia abbreviata* (C.Agardh) Lange-Bertalot.

More detailed information on phytobenthos can be found in Annex 10 with the complete list of species.

4. Discussion of results

The objective of the survey has been accomplished and it will serve as a methodological basis for future monitoring programs as an essential part of river basin management planning.

During field work, also laboratory part, the Moldavian experts have had the opportunity to collaborate with the Austrian team and this exchange of experience has a good impact on future surface water monitoring activities according to WFD. Also, specialists from the Environmental Agency had the opportunity to visit Austrian institutions involved in monitoring and data management, to be instructed on BQE key determination, assessment and validation of data till the presentation of this information to the broad public.

For the field survey there have been selected monitoring stations on rivers at risk and with an impact on the community. Also, these selected water bodies have not been before monitored – so the information obtained will be very useful for further planning.

At first sight one could see that the water level was very low in most of the rivers, some of them even disappearing, due to weather conditions and human impact (water abstraction and construction of dams). As a consequence, the concentration of chemical parameters got higher results and biological elements had poor results.

Study visit organised later in October by the Umweltbundesamt, Environment Agency Austria (EAA) within the framework of the EU4Environment program Water resources and environmental data comes with the mission to strengthen the capacities of specialists in data evaluation and interpretation. The study visit organised for both managers and laboratory specialists strengthened knowledge on the correct implementation of European water monitoring policies, providing insights into Austrian routines and practices and providing training on biological laboratory work.

5. Next steps and Lessons learned

The experience gained in all directions (planning of the field survey; choosing of monitoring sites in the office and at the river; filling of field protocols; sampling; determination, etc) would be applied in routine monitoring activities.

The selected stations could be further included in the monitoring plans in order to have at least 4 physicochemical data for assessment according to national legislation. This measure will cover data gaps for next management plans.

Regular trainings on physico-chemical analyses, data validation according to new standardized methodologies is welcomed. The achievement of the new standardized methods and consumables for them could improve the chemical results of the laboratory.

Also, regular training on certain groups of organisms (Bacillariophyceae, Trichoptera, Ephemeroptera, Plecoptera, Diptera, Oligochaeta, Hirudinea, etc.) and certain determination keys accordingly would improve water quality assessment.

And not the least, more qualified staff in the laboratory is a must.

6. Annexes

Annex 1: Field protocols summary (in Excel format) Annex 2: Field protocols Annex 3: Hydro-morphological site description Annex 4: Chemical data summary (in Excel format) Annex 5: Protocol for sample handover Annex 6: Water quality norms Annex 7: Biological data summary (in Excel format)-benthic invertebrates Annex 8: MHS field tables Annex 9: Protocols for Diatom sampling Annex 10: Biological data summary (in Excel format)- Diatoms Annex 11: Photo documentation Annex 12: Metadata

Annexes are available as separate documents

www.eu4waterdata.eu

Implementing partners

umweltbundesamt[®]

Austrian
 Development
 Agency

UNECE

With funding from Austrian Development Cooperation

Co-funded by

